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Abstract

The anti-malarial agent cladosporin is a nanomolar inhibitor of Plasmodium falciparum lysyl-

tRNA synthetase, and exhibits activity against both blood and liver stage infection. Cladosporin 

can be isolated from the fungus Cladosporium cladosporioides, where it was believed to be 

biosynthesized by a highly reducing (HR) and non-reducing (NR) iterative type I polyketide 

synthase (PKS) pair. Genome sequencing of the host organism, and subsequent heterologous 

expression of these enzymes in Saccharomyces cerevisiae produced cladosporin, confirming the 

identity of the putative gene cluster. Incorporation of a pentaketide intermediate analog indicated a 

5+3 assembly by the HR PKS Cla2 and the NR PKS Cla3 during cladosporin biosynthesis. A 

putative lysyl-tRNA synthetase resistance gene was also identified in the cladosporin gene cluster. 

Analysis of the active site emphasizes key structural features thought to be important in resistance 

to cladosporin.
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Cladosporin (1) (also known as asperentin) is a tricyclic octaketide that is produced by 

several fungal species including Cladosporium,1–4 Chaetomium,5 Penicillium,6 Eurotium,7,8 

and Aspergillus.9 Cladosporin exhibits some interesting bioactivity, including antifungal, 

antibiotic, and plant growth inhibitory properties, as well as anti-inflammatory effects in 

mouse lung tissue.10 Most recently, cladosporin has been shown to be a potent, nanomolar, 

inhibitor of Plasmodium falciparum blood- and liver-stage proliferation.11 Although many 

antimalarial agents currently exist, endoperoxides represent the only class of molecules for 

which resistance has not significantly developed, and even these do not inhibit the 

asymptotic liver stage infection. The discovery of the bioactivity of cladosporin represents a 

promising lead for treatment of malaria, and several studies on the topic have been published 

since then.12,13

Previously in our group, we investigated the biosynthesis of several related fungal 

polyketides that belong to the resorcylic acid lactone (RAL)- and dihydroxyphenyl acetic 

acid lactone (DAL)-containing polyketides, including hypothemycin (RAL type),14 radicicol 

(RAL type),15 and dehydrocurvularin (DAL type).16–19 Biosynthesis of these polyketides 

requires cooperative action of two iterative type I polyketide synthases (PKSs): a highly 

reducing (HR) PKS and a non-reducing (NR) PKS. Based on structural similarities, we 

hypothesized that cladosporin is also biosynthesized by a HR and NR PKS. Early work in 

our group assigned the absolute stereochemistry of cladosporin.2,3 More recently, the total 

synthesis of cladosporin and its diastereomer isocladosporin, has been reported.20,21 To 

better understand PKS assembly and enable analog production via synthetic biology; we 

sought to heterologously express, and reconstitute cladosporin expression in Saccharomyces 
cerevisiae. To this end, we sequenced the genome of the producer organism Cladosporium 
cladosporioides UAMH 5063. This resulted in 30Mb of genomic information over a total of 
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764 contigs. The genomic data was annotated using Antibiotics & Secondary Metabolite 

Analysis Shell (antiSMASH v2.0).22 The software identified 50 putative secondary 

metabolite gene clusters in the genome of C. cladosporioides, seven of which encode type I 

iterative PKSs. One gene cluster in particular possessed high sequence homology to those of 

hypothemycin and zearalenone. Spliced gene sequences contained within this gene cluster 

were identified using Hidden Markov model (HMM)-based software FGENESH 

(Softberry),23 and the resulting intron-less sequences analyzed individually using BLAST 

(NCBI), Figure 1.

The HR and NR PKS contained within the gene cluster, Cla2 and Cla3 respectively, were 

cloned and expressed in S. cerevisiae BJ5464-NpgA (Supporting Information S2 and S3). 

The proteins were successfully expressed from single transformants, and with minimal 

optimization, cladosporin was isolated from double transformants at a titer of 10 mg/L after 

RP-HPLC purification (Supporting Information Figure S1). Identity of cladosporin was 

confirmed by LC-ESI-MS (Supporting Information Figure S2), using combined retention 

time matching with accurate mass matching, and NMR analysis (Supporting Information 

Figure S3 and S4). This confirmed our identification of the cladosporin gene cluster in C. 
cladosporioides. Given that S. cerevisiae is an extremely well-studied organism for 

heterologous production of other natural products such as artemisinic acid24 and 

lovastatin,25 this result constituents a significant step toward large scale production of 

cladosporin.

To further probe the biosynthesis of cladosporin in vivo, we conducted advanced precursor 

feeding studies (see Supporting Information). The necessary reduction of the C3 position of 

cladosporin led us to hypothesize that the HR PKS, Cla2, is responsible for biosynthesis up 

to the pentaketide stage, inclusive of the THP ring (Supporting Information Figure S5),3 

whereas the three subsequent ketide extensions with no reduction are catalyzed by Cla3. In 

accord with observations on other NR PKSs that require an HR PKS partner,14 Cla3 is not 

able to load and produce product on its own from malonyl CoA. Hence, the proposed 

pentaketide intermediate was synthesized as a N-acetylcysteamine (SNAC) thioester (2), 

Scheme 1 (see Supporting Information), and fed to purified Cla3, along with malonyl-CoA. 

After 24-hour incubation at room temperature, metabolites were extracted and analyzed by 

LC-ESI-MS (Supporting Information Figure S6). Identification of cladosporin (1), using 

combined retention time matching with accurate mass matching, confirmed that the 

pentaketide intermediate analog (2) is recognized by Cla3. It is likely the final product of the 

HR PKS Cla2, which remains covalently bound as a thioester until transfer to the SAT 

domain of the NR PKS Cla3. This “5+3” ketide assembly of cladosporin represents the first 

example of its type, with other DAL- and RAL-type polyketides assembled in a “4+4” 

(dehydrocurvularin)17–19 “6+3” (hypothemycin, zearalenone)14,26 and “5+4” (radicicol)15 

fashion. Thus THP ring formation appears to be catalysed by Cla2, where oxa-Michael type 

cyclization on an unsaturated thioester intermediate at the tetraketide stage would be highly 

favoured,3 Figure 1.

Encouraged by these results, we conducted further feeding studies with Cla3 (Table1, 

Supporting Information Figures S7 and S8). Surprisingly, Cla3 accepts several unnatural 

substrate analogs that do not contain the tetrahydropyran ring. The presence of a hydroxyl 
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group is vital but its stereochemical configuration is not important for recognition. However, 

carbon chains longer than ten carbons are not accepted, suggesting a hydrophobic binding 

pocket of limited size in the enzyme. Furthermore, the promiscuity of Cla3 could allow for 

the semi-synthesis of new antimalarial analogs.

We then undertook homology modelling of the product template (PT) domain using I-

TASSER,27–29 and subsequent docking studies using AutoDock Vina,30 in an effort to better 

understand how the THP ring of the natural substrate fits in the active site, Figure 2.

The most suitable homology that was used by I-TASSER as the top threading template was 

the crystal structure of the PT domain from PksA, the NR PKS responsible for biosynthesis 

of aflatoxin B1 in Aspergillus parasiticus (PDB ID 3HRQ).31 Our homolgy model indicates 

that the THP ring can be readily accommodated in the PT active site. Furthermore, as the 

ketide is extended in the PT domain, it appears to curve around on itself, up until the 

octaketide stage where C8a is now in close enough proximity to C4a to cyclize. The 

resulting aromatized intermediate could then be transferred to the TE domain, where 

hydrolysis and/or lactone formation could occur to produce cladosporin (1).

Cladosporin’s proposed antimalarial mode-of-action is inhibition of the P. falciparum lysyl t-

RNA synthetase (KRS1).11,12,32 Interestingly, a putative lysyl-tRNA synthetase gene, cla4, 

is contained within the cladosporin gene cluster. Resistance genes can often be found close 

to the biosynthetic machinery of natural products. It is possible that Cla4 may be infer 

cladosporin resistance. Hoephner et al. found that S. cerevisiae lysyl-tRNA synthetase KRS1 

is not inhibited by cladosporin, and that this resistance is related to the two key active site 

residues, Gln324 and Thr340. Replacement of Gln324 with a hydrophobic valine lead to a 5.7-

fold increase in cladosporin sensitivity, whereas replacement of Thr340 with a less bulky 

serine increased sensitivity 10.4-fold. The corresponding double mutant was 38.7-fold more 

sensitive to cladosporin. Therefore, it appears that a prerequisite of cladosporin resistance is 

the presence of a polar group at position 324 and a bulky group at position 340, a 

requirement that is met by the analogous residues in Cla4. This is further supported by the 

co-crystal structure of P. falciparum KRS1 and cladosporin, wherein the isocoumarin moiety 

of cladosporin occupies a similar orientation as the adenine of ATP, with its aromatic ring in 

a hydrophobic interaction with Val328 (Supporting Information Figure S9). Additionally, the 

THP ring of cladosporin is located directly adjacent to Ser344, where any increase in steric 

bulk would clash with the methyl substituent on the THP ring. The C. cladosporioides 
genome contains 3 putative lysyl t-RNA synthetases, Cla4, Lys2 and Lys3. Neither Lys2 nor 

Lys3 contain the Gln-Thr pair that appear necessary for cladosporin resistance, in contrast to 

Cla4.

We suggest that Cla4 may not be inhibited by cladosporin, thereby imparting cladosporin 

resistance to C. cladosporioides. It is likely that cla4 is under the control of the same 

regulation as cla2 and cla3, and when cladosporin biosynthesis is switched on, transcription 

of cla4 will then be necessary for continued protein synthesis in C. cladosporioides.

In this work, we present identification, expression and demonstration of functional activity 

of the HR and NR PKS responsible for cladosporin production in Cladosporium 
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cladosporioides. We have also identified a putative lysyl-tRNA synthetase encoded in the 

cladosporin gene cluster. This likely indicates a probable resistance mechanism in 

Cladosporium cladosporioides.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Cladosporin gene cluster in Cladosporium cladosporioides and putative biosynthesis by the 

HR PKS Cla3 and NR PKS Cla2 contained therein. KS, ketosynthase; MAT, malonyl-

CoA:ACP acyltransferase; DH, dehydratase; ψMT, pseudo C-methyltransferase; ψKR, 

structural ketoreductase; ER, enoylreductase; KRc catalytic ketoreductase; ACP, acyl carrier 

protein; SAT starter unit:ACP transacylase; PT, product template; TE, thioesterase.

Cochrane et al. Page 7

Angew Chem Int Ed Engl. Author manuscript; available in PMC 2017 January 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Active site cavity of Cla3 PT with docked thioacid analogs. Residues analogous to Leu1585, 

Tyr1458 and catalytic His1311, are conserved among all RAL-type PKSs. (A) Pentaketide 

analog relatively linear in the active site (B) Hexaketide starting to form a bent conformation 

(C) Constricted heptaketide analog forms a loop structure (D) Uncyclized octaketide 

thioacid analog. C8a is now only 4Å away from C4a.
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Scheme 1. 
In vitro assay with Cla3. Cladosporin can be synthesized from pentaketide-SNAC thioester 

(2) and malonyl CoA.
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Table 1

Incorporation of unnatural analogs by Cla3.
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